

Excellence in Deposition Materials

SPUTTERING TARGETS

EVAPORATION MATERIALS

TARGET BONDING

EVAPORATION SOURCES

SUBSTRATES & WAFERS

Eden Lab supplies laboratory and scientific research equipment in Australia and New Zealand. For nano technology research, Eden Lab represents world leading manufacturers specialising in following techniques:

Deposition - E Beam Evaporation

PECVD Sputtering

Thermal Evaporation

Etching - RIE

DRIE

Ion Beam Milling
Dry Release Etching

Growth - ALD

PA-MOCVD

Cleaning - Wet - Single Wafer

Large Substrate

Pelliclized and UnPelliclized Reticle

Dry - Plasma Ashing

Low Temperature Strip/Clean High Temperature Strip/Clean

Dicing - Plasma Dicing

Surface Modification

Other - Plates

Plasma Sources

Fast Atomic Sequential Technology

To support our customers with our systems, we supply high purity non-ferrous materials, customized alloys, compounds and almost every kind of complicated synthetic material, etc. We have great advantages in magnetron sputtering targets, vacuum coating materials, high-purity metals, high-purity compounds, and coated substrates.

PROCESS EQUIPMENT

AEM has complete machining center, and we do all of our machining "In

sure strict adherence to our mechanical s

provide a part of equipments for materials processing or testing to prove our strength.

American Agilent Atomic Absorption Spectrophotometer

Arc Melting Furnaces

French JY Inductively Coupled Plasma Emission Spectrometer

Sweep Election Microscope

Dehydrogenation Furnace

High Vacuum Carbon Tube Furnace

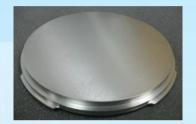
Inductively Coupled Plasma Mass Spectrometry (ICP)

CNC

Wire Electrical Discharge Machining (WEDM)

Physicochemical Analyzer

Sputtering Targets


As a senior manufacturer for varies nonferrous metals, AEM has rich experience in all pure metal and alloy targets production. We also extend to other new targets like oxide, ceramic, compounds etc and win good reputation by its excellent performance.

Hardware and decorative coating materials

AEM provides hard wearing coatings for reducing coefficient of friction and reducing wear, and tribological coatings for precision components used in automotive engines. The decorative coatings we produce for scratch resistant and decorative color finishes for hard coating on mobile phones, jewelry, watches, eyewear, automotive decoration, domestic appliances, bathroom and kitchen hardware.

Ti Sputtering Target

Ta Sputtering Target

TiSi2 Sputtering Target

Cr Sputtering Target

CrAl Sputtering Targets

CrB Sputtering Targets

Resistance materials

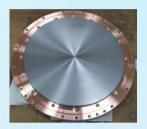
The chip resistor of passive component is formed by plating a resistive material on the Al2O3 substrate. In addition to being film plated, there are also directly cutted to some thin-film resistors.

Ni alloy: NiCr, NiCrSi, NiCrAl, NiCrAlSi, NiCrAlCu, NiCrMnAlSi

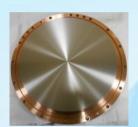
Cu alloy: CuNi, CuSn, CuNiMn, CuMnNi, CuMnSn, CuMnAl

other: CrSi, Cr+SiO, CrSiTaAl, Ta, TaSi2, TaAl

NiCr Sputtering Target



Semiconductor materials


The sputtering target material is the core of semiconductor wafer manufacturing, and the chip requires high purity materials, generally over 99.999%.

AEM meets tougher standards quality to produce sub-micron scale and wafer targets in ever larger sizes.

- Low particle
- Good film uniformity
- High usage efficiency

Ta Sputtering Target

WTi Sputtering Target


Mo Sputtering Target

AlTa Sputtering Target

Cu Sputtering Target

Ag Sputtering Target

Transparent conductive materials

It is a ceramic material with a visible light transmittance of ~85% and a conductivity of ~10-4 ohm-cm.

P-Type: CuBO2, CuAlO2, CuCrO2, CuGaO2, CuInO2, SrCu2O2, etc..
N-Type: ITO, IZO, InGaZnO, IGTO, AZO, GZO, MZO, ZIO, ATO, etc..

AZO Sputtering Target

Thin film batteries materials

AEM's unique technologies covering the substrate, cathode deposition, passivation and packaging. So we can produce revolutionary new batteries that used in many processes and applications. These batteries are ideally suited for applications that require a high temperature compatible, compact, safe, and high power rate battery. They are also suited for smart cards, cellular phones, and other portable electronics.

High temperature superconductor materials

The high temperature superconductors materials have extraordinary superconducting, magnetic properties and great potential for wide-ranging technological applications. AEM can supply some high temperatures superconducting materials like BiSrCaCuO , TIBaCaCuO , HgBaCaCuO.

YBaCuO Sputtering Target

Optical materials

Optical materials are substances used to manipulate the flow of light. It includes reflecting, absorbing, focusing or splitting an optical beam. The efficiency of a specific material at each task is strongly related to wavelength dependent, thus It is vital to have a full understanding of the interaction between light and matter.

Ferroelectric and piezoelectric materials

Ferroelectric materials offer a wide range of properties. They are used in nonvolatile memories, capacitors, sensors, actuators, resonant wave devices, radio-frequency filters, infra-red detectors.

Piezoelectric materials are commonly used in actuators for micropositioning and nanopositioning, sensors, conventional vibration detectors, and also as sound pickups on musical instruments.

Ferroelectric materials: BaTiO3, BaZrO3, BaZrTiO3

Piezoelectric materials: PbTiO3, PbZrO3, PbZrTiO3 (PZT)

PbTiO3 Sputtering Targets

BaTiO3 Sputtering Target

Magnetostrictive materials

A magnetostrictive material consists of tiny ferromagnets. These ferromagnets usually are iron, nickel or cobalt, which can be applied in active noise cancellation, vibration cancellation, sonar, and more efficient dental tools.

Tb0.33Dy0.67Fe2 Sputtering Target

Thermoelectric materials

Thermoelectric materials can be utilized to convert waste heat into useful electricity. This makes hardly usable or almost lost thermal energy into productive applications as efficient as possible. For example, spacecrafts, manufacturing industries, automotives.

Thermoelectric materials:

BiTe, SbTe, BiSe, BiSbTe, BiTeSe, Mg2Si, Mg2Sn, Mg2Ge, Mg2Pb, etc..

FeSb, CoSb, ZnSb, CoSbTe, NbCoSb, ZrCoSb, TiCoSb, ZrTiCoSb, HfNiSn etc..

Bi2Te3 Sputtering Target

Sb2Te3 Sputtering Target

Magnetic materials

Magnetic materials play an important role in the advancement of industrial and scientific growth. They are invariably used in power generation and transmission, electronic appliances, analogue and digital data storage, medical appliances like magnetic resonance imaging (MRI), magnetic therapy and drug delivery, sensors and actuators, scientific instruments, etc.

Co/Fe Sputtering Target

Fe3O4 Sputtering Target

Oxygen storage material

Due to the formation of hydrides, metals or alloys can reversibly absorb and release hydrogen under mild conditions which called hydrogen storage alloys. They are divided into the following types: AB5 type (LaNi5, LaNi4.6Al, CaNi5, MmNi5, etc.), AB2 type (Ti1.2Mn1.8, ZrV2, ZrMn2, TiCr1.8, etc.), AB type (TiFe, etc.), A2B type (Mg2Ni, etc.).

Mg2Ni Sputtering Target

High entropy alloy

HEAs have been shown to possess good creep strength, excellent oxidation corrosion and wear resistance, high hardness, superior thermal and chemical stability and good magnetic properties.

TiZrHf (1-1-1 at%)

Biomedical materials

Surface active bio-ceramics have good biocompatibility and can form a biological interface with bones. The most famous of them is hydroxyapatite, a calcium phosphate salt close to human bone components, and it is used to replace human hard tissue biomaterials. Ca3 (PO4) 2 is also commonly used dental or bone substitute material.

Other common biomedical materials include CoCrMo (Cr: 27~30%, Mo: 5~7%) alloy for artificial joints, and stainless steel used in dentistry, pure Ti, Ti-6Al-4V, Ti-6Al -7Nb, Ti-25Nb-25Zr and other alloys.

HA Sputtering Target

Evaporation Materials

AEM offers evaporation materials with high purity and in a variety of shapes and sizes to best fit your coil, boat and crucible or hearth liner. The most common shapes of evaporation materials are granules, pellets, tablets, rods, plates and rings. We offer a wide variety of evaporation materials with common shapes and sizes that are consistently in stock, so you don't waste time waiting around for your order. However, if you need an uncommon shape or size, contact AEM to see if we can meet your specific requirements.

Pure Metal Evaporation Materials

Product Name	Purity	Shape	Product Name	Purity	Shape
Au	99.99, 99.999%	pellets & pieces	Rh	99.95%	pieces
Ir	99.90%	pieces	Ru	99.90%	pieces
Pd	99.95%	pellets	Ag	99.99%	pellets & pieces
Pt	99.99%	pellets		A	

Au Evaporation Material

Pd Evaporation Material

Pt Evaporation Material

Ag Evaporation Material

Oxide Evaporation Materials

Product Name	Purity	Shape	Product Name	Purity	Shape
Al2O3	99.99%	pieces	SiO2	99.995%	pieces
Cr2O3	99.90%	pieces	Ta2O5	99.90%	powder/tablets
HfO2	99.90%	pellets/pieces	TiO2	99.99%	powder/tablets
ITO	99.99%	pieces	WO3	99.90%	pieces
MgO	99.95%	pieces	ZnO	99.9, 99.99%	powder/tablets
Nb2O5	99.95%	pieces			

Al2O3 Evaporation Material

ITO Evaporation Material

TiO2 Evaporation Material

ZnO Evaporation Material

Chemical Compound Evaporation Material

Product Name	Purity	Shape	Product Name	Purity	Shape
Ag2S	99.999%	pieces	CdTe	99.99%, 99.999%	powder & pellets
As3S3	99.999%	pieces	PbTe	99.99%, 99.999%	powder & pellets
Bi2S3	99.99%, 99.999%	powder & pellets	Sb2Te3	99.99%, 99.999%	powder & pellets
CdS	99.99%, 99.999%	powder & pellets	Bi2Se3	99.99%, 99.999%	powder & pellets
CuS	99.99%, 99.999%	powder & pellets	CdSe	99.99%, 99.999%	powder & pellets
GaS	99.99%, 99.999%	powder & pellets	Ga2Se3	99.99%, 99.999%	powder & pellets
In2S3	99.99%, 99.999%	powder & pellets	GeSe	99.99%, 99.999%	powder & pellets
PbS	99.99%, 99.999%	powder & pellets	In2Se3	99.99%, 99.999%	powder & pellets
Sb2S3	99.99%, 99.999%	powder & pellets	PbSe	99.99%, 99.999%	powder & pellets
Bi2Te3	99.99%, 99.999%	powder & pellets	Sb2Se3	99.99%, 99.999%	powder & pellets

MgF Pieces

YbF3 Pieces

YF3 Pieces

ZnS Pieces

Target Bonding

AEM provides a complete range of target bonding services. Target Bonding is a critical process and the exact fabricating method employed can vary depending on the choice of the sputtering target material. A properly bonded sputtering target will normally give a longer working life than a non-bonded target, may enable the use of a higher power input to achieve faster sputtering rates and will enable thin film process parameters to be consistently repeated.

Sizes and Shapes of Target Bonding

AEM can easily bond most targets, in any size or shape. This includes round targets from 0.5'' to 16'' in diameter, rectangular targets from $1'' \times 1''$ to $10'' \times 60''$, 'Delta' targets, and other custom shapes.

Backing Plate Material

AEM also provides Oxygen-Free Copper backing plate, Molybdenum backing plate, Copper and Stainless Steel Cups for our customers.

Backing plates are available for the following systems

Perkin Elmer, Leybold, MRC, CVC, Airco, Custom Designed Systems

Evaporation Sources

AEM also engages in production of components and parts used for electron beam evaporation, ion source and thermal evaporation. The range of products includes **Crucibles**, **Evaporator Boats** and **Thermal Filaments**. The quality tests are conducted in the whole production process so as to achieve perfect quality from external dimension to micro structure.

Substrates & Wafers

Successful deposition of materials often depends on the proper substrates, with a good lattice match and a clean, even surface. AEM offers a variety of crystal substrates and wafers in multiple orientations to meet your deposition needs. All these materials undergo rigorous analytical testing including trace metal analysis and x-ray diffraction in order to insure the highest purity standards.

Types of Substrates & Wafers

High-temperature superconducting thin films substrates	Magnetic and ferroelectric thin film substrates		
YAIO ₃	Nd:SrTiO₃		
MgAl ₂ O ₄	Fe:SrTiO₃		
LaAlO ₃	TGG		
MgO	LaAlO₃		
SrTiO₃	(La,Sr)(Al,Ta)O₃		
(La,Sr)(Al,Ta)O₃	Nb:SrTiO₃		
YSZ	SrTiO₃		
LaSrAlO ₄	Al ₂ O ₃		
NdGaO ₃	GGG		
	TiO ₂		
GaN thin film substrates	Semiconductor thin film substrate		
GaN	InAs		
Al ₂ O ₃	GaAs		
ScMgAlO ₄	GaSb		
LiAIO ₂	InP		
MgO	Ge		
6H-SiC,4H-SiC	Si		
ZnO			
Halide crystal substrate	Ceramic substrate		
NaCl	Al_2O_3		
KCI	AIN		
KBr	ZrO ₂		
	Si3N4		
Metal substrate			
GMM			
Cu			

Typical sizes of Substrates & Wafers:

5 mm x 5 mm, 10 mm x 10 mm, 10 mm x 5 mm, 15 mm x 15 mm 12,7 mm x 12,7 mm, 20 mm x 20 mm, 25 mm x 25 mm, Ø1", Ø2" Lateral tolerances: +0/-0.05 mm

Typical thickness of Substrates & Wafers:

0.5 mm, 1.0 mm, other thicknesses down to 0.1 mm on request Vertical tolerance: +/- 0.05 mm, or better on request

Eden Lab Pty Ltd 13U/175, Lower Gibbes Street Chatswood, NSW 2067 Sydney, Australia

Hotline: +61 491 333 699

Email: contact@edenlab.com.au

www.edenlab.com.au